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SMARTCAP VALIDATION 

Independent assessment from Universidad de Chile 

 

Further to the independent assessment of SmartCap performed by Monash University Accident Research 

Centre, Austin Health Department of Respiratory & Sleep Medicine and the Institute for Breathing & Sleep, a 

validation of the SmartCap Fatigue Monitoring technology has been completed by researchers in the Faculty of 

Medicine at the University of Chile. 

EdanSafe provided de-identified SmartCap data to Universidad de Chile researchers for the purposes of an 

independent assessment. In particular, the researchers focussed on identifying the extent to which the signals 

detected by SmartCap headwear matched clinical EEG, and also determining whether large data sets captured in 

a field setting reflected the circadian patterns expected.  

I’m pleased to let you know that the study achieved both of these objectives. To paraphrase the findings: 

• The SmartCap utilises signals that reliably represent EEG; and 

• The SmartCap data, when analysed by time of day, adequately reflects the expected circadian patterns.  

Attached to this letter is a translation of the full report.  

 

 

 

Kind Regards, 

 

Daniel Bongers 
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Project: Evaluation of “SmartCap” tecnology designed to monitor on-line the fatigue level of 

workers.   

Applicant: División Ministro Hales (DMH), Codelco.   

Investigator: Sleep and Chronobiology Laboratory, Department of Physiology and Biophysics, 

School of Medicine. University of Chile.   

Progress Status: Completed.   

Introduction:   
Fatigue and accidents in the operational environment.   

In the operational environment scenario where the operating system is highly dependent on human performance, 

fatigue should be defined as a propensity to degrade performance. From this perspective, fatigue can be seen 

as an indicator of baseline risk for the occurrence of errors and accidents.    

Current evidence shows that it is not predictable, moment-to-moment, if a particular action in a context of fatigue 

will be conducive to error. This suggests that the occurrence of accidents in the operational environment of 

fatigue, is a stochastic phenomenon. Studies in subjects undergoing sleep deprivation led to theorize that this 

hazardous yield variability arises from a condition of persistent instability in vigilance. That is, a configuration of 

high homeostatic sleep pressure, resulting in a rapid and uncontrollable transition to sleep, to which the subject 

resists making an increasing effort to achieve compensatory yield. Thus, the timely occurrence of an error arises 

from a brain state of effective transition to sleep for a short time, whilst vigilance is maintained with effort. Thus 

emerges a possible explanation of why a person deprived of sleep, prone to fatigue thus could not be fully alert 

to a decrease in performance, as he is unable to perceive any errors or omissions. This realises the usual 

discrepancy between self-perceived fatigue and reduced performance objective.   

It is emphasised that the association between fatigue and accidents involves the coincidence in a period of 

reduced attention, high cognitive demands and significant consequences in the case when an error occurs.    

      
Biological determinants of fatigue and strategies developed for prediction.   

The magnitude of fatigue results from the interplay of multiple factors, namely time awake, circadian phase and 

workload (time on a specific task, complexity and intensity of the task).   



	
    

In the context of increasing efforts to optimise fatigue risk control in the operational environment, there are 

various mathematical models to anticipate the occurrence of fatigue and proactively intervene in the course of 

that process. The vast majority of these models comprise three main components in the modulation of alertness 

and performance: circadian fluctuation of alertness and sleep propensity; homeostatic modulation of sleep-wake 

cycle (time awake, the time spent sleeping, and accumulated sleep debt); and sleep inertia (depends on the 

depth of sleep upon awakening. This dissipates exponentially from the time of awakening).   

   

   
   

 

The major limitation of these mathematical models lies in the failure to consider the inter-individual differences 

and the effect on the level of fatigue and the likelihood of an error due to sleep loss and circadian timing 

(vulnerabilities: larks verses owls, basal sleep requirements, experience in the specific task). Consequently, the 

most applicability is in predicting large-scale projects, thus providing a pattern that guides the planning of 

working hours. The value of these models becomes questionable for the individual case. It is in this context that 

SmartCap emerges as an innovative technology, while claiming to be able to report from moment to moment, 

and in a discrete numerical scale, the status of a particular users fatigue based on electroencephalographic 

criteria.    

   
  
Properties promised by Smartcap technology.   

1.- Ability to capture in the field electroencephalographic signals of sufficient quality to proceed with analysis.   

Model of Three Processes represented schematically 



	
    

2.- Determining a level of fatigue, second by second, given a window of 12 seconds into discrete categories that 

represent a growing state of fatigue (2, 3, 3+ and 4). This scale is presented as universal, therefore claims to 

have the same meaning for any subject and in any situation.   

3.- Alarm generation for the states 3+ and 4. It assures that these alarms have high sensitivity and specificity.   

4.- Generation of a database that stores the history of temporal records of all operators monitored.   

   

Brief overview regarding EEG and its application in the analysis of fatigue and sleepiness.   

Electroencephalography (EEG) is a technique that reports the electrical brain activity noninvasively. Discovered 

by Hans Berger in 1924, it represents a mature technology with 90 years of evolution. In classical EEG, a 

variable number of metal electrodes are divided into different positions on the scalp, using conductive paste or 

gel to reduce the resistance between the electrode and the skin. The spatial deployment of electrodes is to 

obtain information from the frontal, parietal, temporal and occipital lobes of both hemispheres of the brain.   

Different types of analysis on voltage fluctuations in the various channels of EEG in both time series and in the 

frequency domain, report valuable information primarily for medical and scientific research applications. 

However, from the long evolution of this technology, researchers have found applications in other areas like 

psychology, social sciences and engineering (mainly in the area of "brain computer interface").   

In the last decade, a dramatic reduction in size, weight and cost of EEG instrumentation, plus the possibility of 

wireless communication with other digital systems, has opened the possibility to further extend applications, 

reaching unsuspected areas, allowing even entry to homes, for entertainment, biofeedback, support learning and 

memory training (examples: emotiv.com, neurosky.com). At present there is an explosion of activity, 

experimentation and product development around this technology area.   

EEG and fatigue analysis.   
The proposed solutions throughout history for detecting fatigue levels presented vast difficulties that are not 

entirely resolved today. The technological approach to the problem has been aimed at creating a " drowsiness 

algorithm", able to discriminate the different steps in the spectrum transition from wakefulness to sleep. The 

variables used in the different algorithms have included eye movement, blink rate and, of course, the EEG. Most 

of these works have achieved only relative effectiveness in detecting fatigue and progressive loss in the ability to 

stay alert.    

The inter-individual differences are the major confusion factor in the development of any algorithm that is based 

on the use of EEG for detecting fatigue and drowsiness, they do not escape the problem of predictive models, as 

I previously emphasised. The task becomes complex due to multiple physical and psychological variables that 



	
    

are operating at one time and specific individual on a given biological determinants known baseline. Another 

group of methodological and technical difficulties arising from the transfer order electroencephalogram from 

controlled laboratory conditions is the operational environment, including: the data reduction resulting from 

modifying a standard EEG arrangement, addressing the entire brain surface topography, a simplified EEG 

arrangement; the need to use dry electrodes (no conductive gel); distance limitations in signal receiving devices; 

transient loss of the signal, preventing continuous records; and lack of adherance of human resources.      

   

Challenges facing Smartcap.   

- Offer conditions for reliable recording in the operational environment. 

- as an indicator of fatigue, a final common pathway for the integration of multiple variables, must address fatigue 

as a function of all the same underlying processes. Begs the question: is the discrete numerical scale that 

displays Smartcap evaluated as multidimensional fatigue or phenomenon, is it constructed from a subset of all 

variables involved? The immediate implication of this question involves the EEG and its ability to reflect fatigue 

as a continuous, progressive and multi-determined phenomenon. 

-SmartCap must deal with inter-individual variations in relation to the determinants of fatigue and performance: 

the discrete numerical scale that Smartcap displays is applicable to all individuals? An affirmative answer would 

imply that it is possible to make a direct and universal behavioral translation for specific electroencephalographic 

markers.    

      



 

	
    
Methods.   
Data Collection.   

• Methodology of sleep deprivation.   

To have a wide range of experimental conditions on the homeostatic pressure for sleep, volunteers were 

subjected to different physiological states, based on the following criteria: the time of day the test is taken, the 

time from the last sleep, and the number of hours of sleep. The subjects were divided into two groups: (A) those 

who slept normally (minimum of 7 hours, having gone to sleep later than midnight) and (B) sleep deprived 

(having slept a maximum of 4 hours between 02:00 to 06:00). The recordings were made at two times during the 

day after the night of controlled sleep: from 09:00 to 11:00; or between 18:00 and 20:00.    

• Enrollment conditions.   

In	
  all	
  cases,	
  recording	
  occurred	
  in	
  parallel	
  with	
  medical	
  standards	
  electroencephalography	
  (Alice	
  PDx)	
  and	
  the	
  

data	
   reported	
   by	
   Smartcap.	
   While	
   the	
   subject	
   was	
   enrolled,	
   he	
   performed	
   an	
   attentional	
   task	
   of	
   visual	
  

recognition:	
  a	
  42-­‐inch	
  LED	
  display	
  (1920x1080)	
  located	
  at	
  1m	
  from	
  the	
  subject,	
  150	
  crosses	
  inscribed	
  in	
  a	
  circle	
  

(shown	
  in	
  Figure	
  4)	
  of	
  gray	
  (RGB	
  (64,64,64)),	
  were	
  presented	
  randomly	
  positioned	
  on	
  a	
  black	
  background	
  (RGB	
  

(0,0,0)).	
   One	
   figure,	
   over	
   a	
   period	
   of	
   3	
   seconds	
   changes	
   progressively	
   towards	
   a	
   bright	
   green	
   color	
   (RGB	
  

(0,255,0)).	
   The	
   time	
   when	
   the	
   colour	
   transition	
   starts	
   is	
   set	
   by	
   a	
   random	
   Poisson	
   distribution	
   (average	
   10	
  

seconds)	
  to	
  make	
  it	
  unpredictable.	
  When	
  the	
  subject	
  recognises	
  figure	
  distinguished	
  from	
  the	
  others,	
  must	
  click	
  

within	
  the	
  circle.	
  The	
  system	
  records	
  the	
  time	
  difference	
  between	
  the	
  start	
  of	
  the	
  color	
  transition	
  and	
  a	
  valid	
  

click,	
  as	
  a	
  record	
  of	
  attentional	
  performance.   

  

Figure 1. Screenshot of attentional task.  
  



 

	
    
 Protocol 1.   

15 subjects (age = 34.8 ± 9.3 years, of both sexes), 8 in group A and 7 in group B, were recorded in parallel and 

for a time of 20 minutes, a standard EEG (Alice PDx) and SmartCap EEG, while performing attentional task as 

described. A special version of Smartcap (provided by EdanSafe), capable of delivering via Bluetooth raw EEG 

data was used for this purpose. The objective of this protocol was to verify the technical quality of the raw data 

that is then subjected to analysis algorithms by Smartcap. All the records of this protocol were performed in AM 

hours.   

Protocol 2.   

Statistical analysis of logs obtained from a pilot study conducted in DMH, and from study a mining company in 

Australia. Language and programming environment R (www.rproject.org) was used for this purpose. The 

objective of this protocol was to analyze the correlation between the state of fatigue reported by Smartcap and 

biological determinants of health.   

Results.   
Protocol Development 1.   

	
  	
   •  Description of SmartCap instrumentation.   

General aspects of the Smartcap instrumentation were analysed. First, it was verified that the system uses 

thread as dry electrical contact between the instrument and the skin of the user's forehead.   

   
Figure 2. Stitching thread in the Smartcap band and their conductivity relationship.   

In figure 2 Smartcap Band and stitching thread is displayed. The thread used is high quality, providing a low 

electrical resistance, comparable to a metallic conductor. Several of these neighboring seams are shorted (gray 



 

boxes) and connected together with a resistance of about 1k. Among these groups are electrically isolated four-

seam most likely corresponding to the electrodes whose derivations produce left and right channel EEG 

Smartcap. Delocalised interconnected and spatially, seams are probably an electrical reference. The band is 

connected (Figure 3) with ease to the processing unit (Figure 4) of Smartcap.   

   

   

Figura 3. The band has a receptacle connector (16 pins) for the Smartcap processing unit.   

   
   

Figure 4. Smartcap processing unit that encapsulates CPU, battery and Bluetooth communication 

module.   

The Smartcap processes EEG signal, determining the level of user fatigue as a numerical category. It may also 

report various conditions of instrumental error or inability to determine a state of fatigue uncertainty of the 

algorithm.   

  
  

	
  	
   •  Comparison of EEG signal provided by Smartcap and a standard EEG.   

The special version of Smartcap, delivering raw EEG signal wirelessly displays two channels at a rate of 256 

samples per second. In figure 5 a 30 second portion of recorded Smartcap synchronised with a front channel 

	
     
	
     



 

PDX Alice (200 Hz) is shown. It can be appreciated that Smartcap strongly filtered low frequency artifacts, such 

as flicker of the eye. Four flashes of similar amplitude are indicated with arrows on both records. Note how small 

they are in the register of Smartcap when compared with high and mid-frequency components.   

      
   

   

Figure 5. Synchronised 30 s record of Smartcap and a front channel Alice PDx.   

The spectral analysis of segments corresponding to the same log shown in Figure 5, is displayed in Figure 6. It 

may be evident that the Smartcap filter attenuates low frequencies about 2 Hz (indicated by arrows)   

   

   

Figure 6. Spectral analysis of the same logarithmic scale segments shown in Figure 5.   

	
    
 Additionally,	
   spectrograms	
   were	
   constructed	
   for	
   both	
   logs	
   (Smartcap	
   /	
   AlicePDx).	
   Differences	
   in	
   both	
  

instrumentation	
  filters,	
  evidenced	
  in	
  Figure	
  6,	
  are	
  not	
  a	
  problem	
  to	
  verify	
  that	
  the	
  overall	
  spectral	
  fluctuations	
  

over	
  time	
  are	
  similar.	
  For	
  the	
  case	
  shown	
  in	
  Figure	
  7,	
  it	
  can	
  be	
  seen	
  that	
  the	
  overall	
  structure	
  of	
  the	
  spectrum	
  is	
  

the	
   same	
   in	
   both	
   cases,	
   with	
   lower	
   spectral	
   power	
   in	
   the	
   central	
   area	
   (blue).	
   More	
   locally,	
   the	
   maximum	
  



 

spectral	
  powers	
   in	
   the	
  beta	
  band,	
   indicated	
  by	
   the	
   labels	
  A	
  and	
  B,	
   are	
   conserved	
   in	
  both	
   spectra.	
   The	
   same	
  

applies	
  to	
  the	
  decrease	
  in	
  power	
  in	
  theta	
  band	
  (labeled	
  C).   

	
    

   

Figure 7. Spectrograms parallel records 20 minutes of Smartcap (above) and a front channel Alice PDx 

(center). Bottom panel corresponds to time related to attentional task.   

   

The set of data provided by Smartcap was explored semi-quantitatively with respect to their behavior in the light 

of the main biological determinants considered in models predictive of fatigue. To this effect we considered only 

data from 17 records deemed valid for analysis.   

   



 

   
	
    

Figure 8. Distribution of states of fatigue reported by Smartcap as sleep debt (basal or deprived of sleep) 

and circadian phase (AM or PM).   

    

   

   

   
Figure 9. Distribution of states of fatigue reported by Smartcap as circadian phase (AM or PM) and time 

in the attentional task (first or second half). All data come from subjects without sleep deprivation.   



 

   
	
    

   
Figure 10. Distribution of states of fatigue reported by Smartcap as circadian phase (AM or PM) and time 

in the attentional task (first or second half). All data come from subjects with sleep deprivation.   

   
	
    

Protocol Development 2.   

• Exploring fatigue levels reported by Smartcap in mining DMH (pilot study) and their relationship 

to circadian phase (day shift or night shift) and time shift.    

   

  

   

Figure 11. Distribution of states of fatigue reported by Smartcap as circadian phase (day shift or night 

shift).   

   

  



 

   

   

   
   

Figure 12. Time course of the distribution of states of fatigue (hourly) reported by Smartcap for each 

circadian phase (day shift or night shift). Green: 2; Yellow: 3; Red: 3+; Purple: 4; Gray: 0. Except for state 

0, the values correspond to the ratio of valid states.  

   
   



 

Figure 13. Time course of the distribution of states of fatigue (every two hours) Smartcap reported by 

two operators working in night shift. Green: 2; Yellow: 3; Red: 3+; Purple: 4; Gray: 0. Except for state 0, 

the values correspond to the ratio to valid states.   

      



	
    

• Exploring fatigue levels reported by Smartcap at Rio Tinto and its relation to circadian phase 

(day shift or night shift) and time shift.    

   
Figure 14. Time course of the distribution of states of fatigue reported by Smartcap in 24 hours. 
Upper panel: distribution of state 0 with respect to all states reported by Smartcap. Central panel: 
distribution of states 2 (green), 3 (yellow) and 3+ (red), only with respect to valid states. Bottom panel: 
distribution of state 4, only with respect to valid states.	
    



	
    

• Effect of the confusion of states in the proportion of failures and false alarms.   

Smartcap operates as an automatic classifier of fatigue level of an operator based on features derived from the 

EEG. From the point of view of risk management, fatigue categories most relevant are those that generate an 

alert that could involve an intervention in the task (eg. Removal of operator). As in any classification system, 

there may be errors in detecting these categories: false negatives (the system fails to generate an alert 

conditions was necessary) and false positives (the system generates an alert when it was not necessary). The 

standard way to quantify the discriminatory power of a rating system is determining its sensitivity (rate of true 

positives correctly identified. A higher sensitivity, fewer false negatives) and specificity (true negative rate 

properly discarded. A greater specificity, fewer false positives).   

In general it is not possible to optimize the sensitivity and specificity simultaneously, so one should choose a 

balance. In practice, seeking a very high sensitivity can be at the cost of a mediocre specificity, which would 

result in too many false alerts, hindering the continuity of the task, deteriorating confidence in the system 

diagnostics and, therefore, making it alerts less effective. This is especially the case if you expect the alert 

condition is unlikely. For example, if the sensitivity is 100%, the specificity is 90% and the probability of 

occurrence of an alert condition is 5%, the probability of a false alarm is 9.5% while the probability of a true alarm 

is 5% (about 2 of 3 alarms would be false). If the probability of occurrence of an alert condition reduces to 1%, 

only 1 in 10 alarms would be true.   

The relevance of an alert can be determined taking into account failures in an attentional task such as the 
OSLER test, as was performed in assessing Smartcap by Monash University. The most extreme case studied in 
this assessment relates to 4 or more successive failures, corresponding to at least 12 seconds unanswered by 
the subject submitted to the OSLER test. This condition almost certainly corresponds to a period of sleep that 
would be high risk in the field. The condition occurs in 6.25% of the data studied. Smartcap results are: 100% 
sensitivity and specificity in 74.04% cutoff > = 3.683333; 94.74% sensitivity and 82.11% specificity in the cutoff > 
= 4. In the former case 80% would be potentially false alarms generated, and in the second case, 74%. Note that 
these results are not directly transferable to Smartcap as it operates in the field. The cutoff mentioned 
corresponds to the evaluation result of averaging the Smartcap along one minute and found an additional state 
"5" corresponding to said sleep, and does not refer to the "3+". In addition, the actual outcome of Smartcap is 
quantized into discrete states that are determined through a process of integration at two levels. To illustrate the 
relationship between the instantaneous state and the integrated state, simplified stochastic simulation was 
developed considering a single competition between two neighboring states. 

The result is a sigmoid relationship can be seen in the following figure.   



	
    

   

Figure 15. Relationship between ratio of instantaneous occurrence of a state and integrated reporting 

The cutoff > = 3.683333, assuming states 3 and 4 correspond to the abscissa and deliver 683,333 with 

probability close to 1 the result "4". In practice, the quantization of the result becomes less controllable sensitivity 

and specificity. However, it is important that the measurement of specificity could yield a much higher value 

when you consider that an alarm condition reported not necessarily indicate the occurrence of a simultaneous 

attentional failure, but the propensity for such failure is briefly present.   

      
Discussion:   

Smartcap proved to be highly reliable with respect to the capture of electroencephalographic signal. During data 

acquisition, were few instances in which it was necessary to stop registration to rearrange the headband and re-

establish the capture of EEG. With regard to the characteristics of the acquisition, we can conclude that 

Smartcap filtered low frequency components (about low 2 Hz), allowing to rule out the high rate engine artifact 

(eg eye blinking) and electrical activity of the muscles of the forehead (EMG), which is observed in raw front 

bypass.   

The dataset provided by Smartcap under controlled experimental conditions, realised a dynamic that keeps 

consistency with major biological determinants of fatigue: the record in basal conditions and PM hours, found 

most represented by 3 and 3+ with respect the AM registry and under the same experimental conditions (effect 

of circadian phase and homeostatic sleep pressure). Under experimental conditions of sleep deprivation, PM 



	
    

schedule recording presented emergence of state 4, and an increased incidence of 3+ with respect thereto in 

AM (effect of circadian phase stepping joined homeostatic pressure for sleep, as sleep debt) schedule.  

Fatigue as a function of elapsed time in a specific task, dividing the records evaluated in two halves.  

In basal conditions and PM hours, it is observed an increase in the proportion of 3+ in the second half of the 

attentional task, with respect to the same point in the first half of the attentional task. Despite being predicted, it 

failed to observe the additive effect of sleep debt over time in attentional task circadian phase, so that no 

difference in the proportion of 3+ and 4 when comparing the first and second half of registration sleep restriction 

conditions and PM hours. The experimental design makes it impossible to consider these findings as conclusive, 

although they allowed an exploration of the behavior and data consistency.   

The relationship between fatigue levels reported by Smartcap, circadian phase and time specific task could be 

analysed with a greater number of records due to available databases provided by DMH and Rio Tinto. In the 

case of DMH data, particularly on the night shift, you can see the additive effect of different biological 

determinants that are acting on fatigue: from the start of the shift a decreasing trend in the proportion of state 2 

with subsequent rise in the final portion of the shift (possible effect of circadian modulation of alertness); the ratio 

of state 3 is an approximately reciprocal to state 2 course with initial climb, plateau, and finally fall in the latter 

portion of the shift; 3+ state ratio also shows a rising trend with subsequent initial plateau. State 4 is poorly 

represented in this dataset. State 2 occupied a ratio to the total valid states clearly lower when comparing the 

night shift to day; situation is reversed in the case of states 3 and 3+. Data provided by Rio Tinto mining reinforce 

the same findings. In this case, the state 4 was plotted individually, verifying that during the night the ratio to the 

total valid states is actually higher. This is consistent with the time at which the circadian modulation of alertness 

is at its lowest level.   

Smartcap performance as a universal indicator fatigue became more equivocal to proceed with individual 

exploration of each of the 17 records obtained under controlled laboratory conditions, and considered valid for 

analysis. Interindividual variability consistent with those reported in the literature is observed. The incidence of 

electroencephalographic markers suggestive of sleep-wake transition, have variable reflection in the state of 

fatigue indicated by Smartcap. This variability also seems to manifest on data provided by DMH. In Figure 13, 

the dynamics of the states of Smartcap for two night-shift workers compared. While the curves realize similar 

trends, possibly reflecting the circadian fluctuation in alertness, both 2 and 3+ states have clearly disparate 

proportions in either worker. If indeed a worker shift after shift is less able to perform, or, if this applies only to 

phenotypic variations in their electroencephalographic manifestations it is not possible to conclude yet.     

With respect to the ability of SmartCap to detect the process of transitioning to sleep, it is necessary to 

emphasize that fatigue and drowsiness, although colloquially used interchangeably in this context should be 



	
    

understood as two different concepts, but closely related. Drowsiness is the propensity to sleep and decreased 

alertness, therefore it is an engine of fatigue and is entirely modulated by the determinants described in the 

prediction model of the latter. There are two strategic directions to quantify the magnitude of sleepiness: through 

polysomnographic analysis, measuring the latency to achieve sleep, without any effort to maintain wakefulness 

(Multiple Sleep Latency Test, MSLT) or to the continuing effort to preserve (Maintaining Wakefulness Test, 

MWT); and behavioral observation, standardized tests designed to reveal the performance degradation (eg 

Psychomotor Vigilance Test, PVT, and Oxford Sleep Resistance Test, Test OSLER), ie, showing fatigue. We 

conclude then that sleepiness realises the physical and cognitive phenomena reflected behaviorally as fatigue. 

Therefore, the potential for desensitisation of SmartCap to account for transition to sleep, should be regarded as 

a failure in its capacity to detect the drowsiness dimensions of the fatigue process.   

Perhaps the most important aspect of an interactive tool for risk management that allows to control reactive 

behavior incidents factors. In this regard it is essential that a defined course of action against alarm levels, 

something that is not formalised in Smartcap technology. The technical difficulty for this purpose depends on 

balancing sensitivity and specificity properly. If the specificity does not reach high enough levels, it can generate 

too many false alarms for the practical implementation of a scheme for management.    

  

 
Conclusions:   

• Smartcap instrumentation produced a reliable signal under laboratory conditions EEG.   

• It is important to note that EEG obtained from frontal electrodes is susceptible to artifacts generated by 

contractions of facial muscles (particularly problematic example chewing gum because it produces a 

sustained artifact).   

• The field data show that the stability problems of the signal (most of the conditions under which 

Smartcap reports "0") occur with a frequency lower than 20%, in the sample of DMH, also with Rio Tinto.   

• The Consolidated Statistical Time fatigue levels that Smartcap delivers adequately reflects the dynamics 

of biological determinants that modulate fatigue.   
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